Exponents for B-stable Ideals
نویسندگان
چکیده
Let G be a simple algebraic group over the complex numbers containing a Borel subgroup B. Given a B-stable ideal I in the nilradical of the Lie algebra of B, we define natural numbers m1,m2, . . . ,mk which we call ideal exponents. We then propose two conjectures where these exponents arise, proving these conjectures in types An, Bn, Cn and some other types. When I = 0, we recover the usual exponents of G by Kostant (1959), and one of our conjectures reduces to a well-known factorization of the Poincaré polynomial of the Weyl group. The other conjecture reduces to a well-known result of Arnold-Brieskorn on the factorization of the characteristic polynomial of the corresponding Coxeter hyperplane arrangement.
منابع مشابه
Bounds for Test Exponents
Suppose that R is a two-dimensional normal standard-graded domain over a finite field. We prove that there exists a uniform Frobenius test exponent b for the class of homogeneous ideals in R generated by at most n elements. This means that for every ideal I in this class we have that f b ∈ I [p ] if and only if f ∈ I . This gives in particular a finite test for the Frobenius closure. On the oth...
متن کامل2 4 Fe b 20 05 VALUATIONS AND MULTIPLIER IDEALS
We present a new approach to the study of multiplier ideals in a local, two-dimensional setting. Our method allows us to deal with ideals, graded systems of ideals and plurisubharmonic functions in a unified way. Among the applications are a formula for the complex integrability exponent of a plurisubharmonic function in terms of Kiselman numbers, and a proof of the openness conjecture by Demai...
متن کاملF -thresholds of Hypersurfaces
In characteristic zero one can define invariants of singularities using all divisors over the ambient variety. A key result that makes these invariants computable says that they can be determined by the divisors on a resolution of singularities. For example, if a is a sheaf of ideals on a nonsingular variety, then to every nonnegative real number λ one associates the multiplier ideal J (a). The...
متن کامل9 M ay 2 00 7 F - THRESHOLDS OF HYPERSURFACES MANUEL
In characteristic zero one can define invariants of singularities using all divisors over the ambient variety. A key result that makes these invariants computable says that they can be determined by the divisors on a resolution of singularities. For example, if a is a sheaf of ideals on a nonsingular variety, then to every nonnegative real number λ one associates the multiplier ideal J (a). The...
متن کاملMultiplier Ideals , V - Filtration and Spectrum
For an effective divisor on a smooth algebraic variety or a complex manifold, we show that the associated multiplier ideals coincide with the filtration induced by the filtration V constructed by B. Malgrange and M. Kashiwara. This implies another proof of a theorem of L. Ein, R. Lazarsfeld, K.E. Smith and D. Varolin that any jumping coefficient in the interval (0,1] is a root of the Bernstein-...
متن کامل